

texttables python module

This is a simple python module for reading and writing ASCII text tables. It
attempts to have an interface as similar to Python’s official csv module
as possible. It supports fixed-size tables (where column sizes are pre-decided)
for reading and writing (including with a dictionary). It supports
dynamic-sized tables (where each column’s width is deduced to be the largest
element in that column) for writing only, including dict writing.

There are less obvious uses to this module, such as being able to use a sort of
TSV that is width-delimited rather than character-delimited.

There are a few limitations to this module. The most obvious are that it
enforces some specific rules to the tables. Cells may not span multiple rows or
columns (and the table therefore must represent a strict integral grid), meaning
that this can only parse a subset of allowed RST tables. Corners must all be
identical, including in the header and all borders (if present). This module
only parses text tables. It will not assist in parsing HTML, LaTeX, or any
other kind of markup.

There is a small unit test suite [https://github.com/Taywee/texttables/tree/master/test] that attempts to
catch obvious issues. Pull requests to any of this module are welcome, as long
as the license remains the same.

The sources are available in the GitHub Repository [https://github.com/Taywee/texttables].

Fixed Readers

texttables.fixed.reader

	
class texttables.fixed.reader(file, widths, dialect=None, fieldnames=None, **fmtparams)

	Fixed-table table reader, reading tables with predefined column-sizes.
The texttables.Dialect class is used to configure how this reads
tables. This is an iterable, returning rows from the table as tuples.

Iteration can raise a texttables.ValidationError if an invalid
table is read.

	Parameters:	
	file – An iterable object, returning a line with each iteration.

	widths – An iterable of widths, containing the field sizes of the table.
Each width may be prefixed with <, >, =, or ^, for alignment through
the Python format specification, though these prefixes will be ignored
if they are present.

	dialect – A dialect class or object used to define aspects of the
table. The stored dialect is always an instance of
texttables.Dialect, not necessarily the passed-in object.
All the attributes of Dialect are grabbed from this object using
getattr.

	fieldnames – An iterable specifying the field names. If this is
absent, field names are pulled from the table. This will change how
the table is read. If this parameter is present, the table may not
have a header. If this parameter is absent, the table must have a
header. Either way, the field names of the table must be delivered
to this class in one way, and exactly only one way.

	fmtparams – parameters to override the parameters in
dialect.

	
dialect

	The texttables.Dialect constructed from the passed-in
dialect. This is always unique, and is not the same object that is
passed in. Assigning to this will also likewise construct a new
texttables.Dialect, not simply assign the attribute.

	
fieldnames

	The table’s fieldnames as a tuple. This will invoke a read on
the file if this method has not been called and this object hasn’t yet
been iterated upon.

	Raises:	texttables.ValidationError – if the table does not properly match the dialect

	
file

	The file object that was passed in to the constructor. It is not
safe to change this object until you are finished using the class

	
widths

	The widths that were passed into the constructor, as a tuple, with
any alignments stripped.

texttables.fixed.DictReader

	
class texttables.fixed.DictReader(file, widths, dialect=None, fieldnames=None, **fmtparams)

	Fixed-table table dictionary reader, reading tables with predefined
column-sizes. The texttables.Dialect class is used to configure how this reads
tables. Tables are read one row at a time. This is a simple convenience
frontend to texttables.fixed.reader. This is an iterable,
returning rows from the table as dictionaries.

All the passed in construction parameters are passed to the
texttables.fixed.reader constructor literally. All properties
also align directly as well.

	
dialect

	

	
fieldnames

	

	
file

	

	
widths

	

Fixed Writers

texttables.fixed.writer

	
class texttables.fixed.writer(file, widths, dialect=None, **fmtparams)

	Fixed-table document writer, writing tables with predefined column-sizes.
The texttables.Dialect class is used to configure how this writes
tables. This works as a context manager, in which case writetop() and
writebottom() will be called automatically.

	Parameters:	
	file – A writable file object with a write method

	widths – An iterable of widths, containing the field sizes of the table.
Each width may be prefixed with <, >, =, or ^, for alignment through
the Python format specification.

	dialect – A dialect class or object used to define aspects of the
table. The stored dialect is always an instance of
texttables.Dialect, not necessarily the passed-in object.
All the attributes of Dialect are grabbed from this object using
getattr.

	fmtparams – parameters to override the parameters in
dialect.

	
dialect

	The texttables.Dialect constructed from the passed-in
dialect. This is always unique, and is not the same object that is
passed in. Assigning to this will also likewise construct a new
texttables.Dialect, not simply assign the attribute.

	
file

	The file object that was passed in to the constructor. It is not
safe to change this object until you are finished using the class

	
widths

	The widths that were passed into the constructor, as a tuple.

	
writebottom()

	Write the bottom of the table out to file().

	
writeheader(row)

	Write the header out to file().

	Parameters:	row – An iterable representing the row to write as a header

	
writerow(row)

	Write a single row out to file(), respecting any delimiters and
header separators necessary.

	Parameters:	row – An iterable representing the row to write

	
writerows(rows)

	Write a multiple rows out to file(), respecting any delimiters
and header separators necessary.

	Parameters:	rows – An iterable of iterables representing the rows to write

	
writetop()

	Write the top of the table out to file().

texttables.fixed.DictWriter

	
class texttables.fixed.DictWriter(file, fieldnames, widths, dialect=None, **fmtparams)

	Fixed-table document writer, writing tables with predefined column-sizes
and names through dictionary rows passed in.

The texttables.Dialect class is used to configure how this writes
tables. This is a simple convenience frontend to
texttables.fixed.writer.
This works as a context manager, in which case writetop() and
writebottom() will be called automatically.

All the passed in construction parameters are passed to the
texttables.fixed.writer constructor literally. All properties
and most methods also align directly as well.

	
dialect

	

	
fieldnames

	

	
file

	

	
widths

	

	
writebottom()

	

	
writeheader()

	Write the header based on fieldnames().

	
writerow(row)

	Write a single row out to file(), respecting any delimiters and
header separators necessary.

	Parameters:	row – A dictionary representing the row to write

	
writerows(rows)

	Write multiple rows out to file(), respecting any delimiters and
header separators necessary.

	Parameters:	row – An iterable of dictionaries representing the rows to write

	
writetop()

	

Dynamic Writers

texttables.dynamic.writer

	
class texttables.dynamic.writer(file, alignments=None, dialect=None, **fmtparams)

	Dynamic-table document writer, writing tables with computed column-sizes.
The texttables.Dialect class is used to configure how this writes
tables. This works as a context manager, in which case finish() will
be called automatically.
This class does not actually write anything out until finish() is
called (or the context manager is exited) because it needs the information
from all rows before it knows how wide to make all the columns.

	Parameters:	
	file – A writable file object with a write method

	alignments – An iterable of alignments. Each alignment may be <,
>, =, or ^, for alignment through the Python format specification.

	dialect – A dialect class or object used to define aspects of the
table. The stored dialect is always an instance of
texttables.Dialect, not necessarily the passed-in object.
All the attributes of Dialect are grabbed from this object using
getattr.

	fmtparams – parameters to override the parameters in
dialect.

	
dialect

	The passed-in dialect. This does not behave like the fixed dialects,
because it does not actually construct a texttables.Dialect
until finish() is called.

	
file

	The file object that was passed in to the constructor. It is not
safe to change this object until you are finished using the class

	
finish()

	Write the top, the bottom, the header (if present), and all rows out
with proper delimitation to file(), respecting the dialect

	
rows

	Get or set the total rows. This will override all rows passed in
with writerow() and writerows()

	
writeheader(header)

	Set the header to be written out

	
writerow(row)

	Add a row to the row set to be written out. This does not write
anything, and is only named as such for uniformity

	Parameters:	row – an iterable representing a row to write

	
writerows(rows)

	Add rows to the row set to be written out. This does not write
anything, and is only named as such for uniformity

	Parameters:	rows – An iterable of iterables representing the rows to write

texttables.dynamic.DictWriter

	
class texttables.dynamic.DictWriter(file, fieldnames, alignments=None, dialect=None, **fmtparams)

	Dynamic-table document writer, writing tables with predefined column-sizes
and names through dictionary rows passed in.

The texttables.Dialect class is used to configure how this writes
tables. This is a simple convenience frontend to
texttables.dynamic.writer.
This works as a context manager, in which case finish() will be called
automatically.

All the passed in construction parameters are passed to the
texttables.dynamic.writer constructor literally. All
properties and most methods also align directly as well.

	
dialect

	

	
fieldnames

	

	
file

	

	
writeheader()

	Set the header based on fieldnames().

	
writerow(row)

	Write a row based on fieldnames().

	Parameters:	row – A dictionary representing a row.

	
writerows(rows)

	Write rows based on fieldnames().

	Parameters:	row – An iterable of dictionaries representing rows.

texttables.Dialect

	
class texttables.Dialect

	Class that is mostly subclassed for use in tables. Some attributes might
only be used for either a dynamic or fixed table, but not both. Likewise,
some attributes might only be used for a reader or writer. This can be
instantiated and have the attributes changed instead of subclassing, for
one-offs, but subclassing is usually clearer.

	
bottom_border = None

	Border character for non-corners on the bottom side of the bottom cells.
None to disable

	
cell_delimiter = u' '

	Delimiter character separating cells from one another. Must exist.

	
corner_border = u'+'

	Border character for corners on each border and on the row and header
delimiters. Required when the borders or delimiters are specified.

	
header_delimiter = None

	Delimiter character separating header from rows. None to disable

	
left_border = None

	Border character for non-corners on the left side of each row. None to
disable

	
lineterminator = u'\n'

	Line terminator. Used only for writing tables, and ignored on reading

	
right_border = None

	Border character for non-corners on the right side of each row. None to
disable

	
row_delimiter = None

	Delimiter character separating rows from one another. None to disable

	
strict = True

	Whether to raise an exception on read errors, such as borders appearing
in the wrong order or missing borders.

	
strip = True

	Whether to strip fields on reads. This is usually desired, especially
for DictReader types.

	
top_border = None

	Border character for non-corners on the top side of the top cells. None
to disable

texttables.ValidationError

	
class texttables.ValidationError

	This is raised if texttables.Dialect.strict is True and an
invalid table is read.

Examples

texttables.fixed.writer

>>> from texttables import Dialect
>>> from texttables.fixed import writer
>>> from sys import stdout
>>> with writer(stdout, [10, 10, 10]) as w:
... w.writeheader(('header 1', 'header 2', 'header 3'))
... w.writerow(('data 1', 'data 2', 'data 3'))
... w.writerow(('data 4', 'data 5', 'data 6'))
...
header 1 header 2 header 3
data 1 data 2 data 3
data 4 data 5 data 6

texttables.Dialect

>>> from texttables import Dialect
>>> from texttables.fixed import writer
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> with writer(stdout, [10, 10, 10], dialect=dialect) as w:
... w.writeheader(('header 1', 'header 2', 'header 3'))
... w.writerow(('data 1', 'data 2', 'data 3'))
... w.writerow(('data 4', 'data 5', 'data 6'))
...
+##########+##########+##########+
|header 1 |header 2 |header 3 |
+==========+==========+==========+
|data 1 |data 2 |data 3 |
+----------+----------+----------+
|data 4 |data 5 |data 6 |
+__________+__________+__________+

texttables.fixed.DictWriter

>>> from texttables import Dialect
>>> from texttables.fixed import DictWriter
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> with DictWriter(stdout, ['foo', 'bar', 'baz'], [10, '>10', '^10'], dialect=dialect) as w:
... w.writeheader()
... w.writerow({'foo': 'data 1', 'bar': 'data 2', 'baz': 'data 3'})
... w.writerow({'foo': 'data 4', 'bar': 'data 5', 'baz': 'data 6'})
...
+##########+##########+##########+
|foo | bar| baz |
+==========+==========+==========+
|data 1 | data 2| data 3 |
+----------+----------+----------+
|data 4 | data 5| data 6 |
+__________+__________+__________+

texttables.fixed.reader

>>> from texttables import Dialect
>>> from texttables.fixed import reader
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> data = (
... '+##########+##########+##########+\n'
... '|header 1 | header 2| header 3 |\n'
... '+==========+==========+==========+\n'
... '|data 1 | data 2| data 3 |\n'
... '+----------+----------+----------+\n'
... '|data 4 | data 5| data 6 |\n'
... '+__________+__________+__________+\n'
...)
>>> r = reader(data.splitlines(), [10, 10, 10], dialect=dialect)
>>> rows = [row for row in r]
>>> r.fieldnames
('header 1', 'header 2', 'header 3')
>>> rows
[('data 1', 'data 2', 'data 3'), ('data 4', 'data 5', 'data 6')]

texttables.fixed.DictReader

>>> from texttables import Dialect
>>> from texttables.fixed import DictReader
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> data = (
... '+##########+##########+##########+\n'
... '|header 1 | header 2| header 3 |\n'
... '+==========+==========+==========+\n'
... '|data 1 | data 2| data 3 |\n'
... '+----------+----------+----------+\n'
... '|data 4 | data 5| data 6 |\n'
... '+__________+__________+__________+\n'
...)
>>> r = DictReader(data.splitlines(), [10, 10, 10], dialect=dialect)
>>> rows = [row for row in r]
>>> rows
[{'header 3': 'data 3', 'header 2': 'data 2', 'header 1': 'data 1'}, {'header 3': 'data 6', 'header 2': 'data 5', 'header 1': '
data 4'}]

texttables.ValidationError

>>> from texttables import Dialect
>>> from texttables.fixed import DictReader
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> data = (
... '|header 1 | header 2| header 3 |\n'
... '+==========+==========+==========+\n'
... '|data 1 | data 2| data 3 |\n'
... '+----------+----------+----------+\n'
... '|data 4 | data 5| data 6 |\n'
... '+__________+__________+__________+\n'
...)
>>> r = DictReader(data.splitlines(), [10, 10, 10], dialect=dialect)
>>> rows = [row for row in r]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in <listcomp>
 File "/home/taylor/Projects/texttables/texttables/fixed/_reader.py", line 273, in __next__
 row = next(self._iter)
 File "/home/taylor/Projects/texttables/texttables/fixed/_reader.py", line 205, in __next__
 fieldnames = self.fieldnames
 File "/home/taylor/Projects/texttables/texttables/fixed/_reader.py", line 135, in fieldnames
 raise ValidationError('The first line of the table did not match what the top of the table should be')
texttables.errors.ValidationError: The first line of the table did not match what the top of the table should be

texttables.dynamic.writer

>>> from texttables import Dialect
>>> from texttables.dynamic import writer
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... row_delimiter = '-'
... top_border = '#'
... bottom_border = '_'
... left_border = '|'
... cell_delimiter = '|'
... right_border = '|'
... corner_border = '+'
...
>>> with writer(stdout, ['', '>', '^'], dialect=dialect) as w:
... w.writeheader(('header 1', 'header 2', 'header 3'))
... w.writerows([
... ('data 1', 'data 2', 'data 3'),
... ('data 4', 'data 5', 'data 6')])
...
+########+########+########+
|header 1|header 2|header 3|
+========+========+========+
|data 1 | data 2| data 3 |
+--------+--------+--------+
|data 4 | data 5| data 6 |
+________+________+________+

texttables.dynamic.DictWriter

>>> from texttables import Dialect
>>> from texttables.dynamic import DictWriter
>>> from sys import stdout
>>> class dialect(Dialect):
... header_delimiter = '='
... corner_border = ' '
...
>>> with DictWriter(stdout, ['foo', 'bar', 'baz'], dialect=dialect) as w:
... w.writeheader()
... w.writerows([
... {'foo': 'data 1', 'bar': 'data 2', 'baz': 'data 3'},
... {'foo': 'data 4', 'bar': 'data 5', 'baz': 'data 6'}])
...
foo bar baz
====== ====== ======
data 1 data 2 data 3
data 4 data 5 data 6

RST tables

>>> from texttables import Dialect
>>> from texttables.fixed import DictReader
>>> from sys import stdout
>>> data = '''
... +------------------------+------------+----------+----------+
... | Header row, column 1 | Header 2 | Header 3 | Header 4 |
... +========================+============+==========+==========+
... | body row 1, column 1 | column 2 | column 3 | column 4 |
... +------------------------+------------+----------+----------+
... | body row 2 | ... | ... | |
... +------------------------+------------+----------+----------+
... '''.strip()
>>> class dialect(Dialect):
... header_delimiter = '='
... corner_border = '+'
... top_border = '-'
... bottom_border = '-'
... left_border = '|'
... right_border = '|'
... cell_delimiter = '|'
... row_delimiter = '-'
...
>>> [row for row in DictReader(data.splitlines(), [24, 12, 10, 10], dialect=dialect)]
[{'Header 4': 'column 4', 'Header 2': 'column 2', 'Header row, column 1': 'body row 1, column 1', 'Header 3': 'column 3'}, {'Header 4': '', 'Header 2': '...', 'Header row, column 1': 'body row 2', 'Header 3': '...'}]

>>> from texttables import Dialect
>>> from texttables.fixed import DictReader
>>> from sys import stdout
>>> data = '''
... ===== ===== =======
... A B A and B
... ===== ===== =======
... False False False
... True False False
... False True False
... True True True
... ===== ===== =======
... '''.strip()
>>> class dialect(Dialect):
... header_delimiter = '='
... corner_border = ' '
... top_border = '='
... bottom_border = '='
... cell_delimiter = ' '
...
>>> [row for row in DictReader(data.splitlines(), [5, 5, 7], dialect=dialect)]
[{'A and B': 'False', 'A': 'False', 'B': 'False'}, {'A and B': 'False', 'A': 'True', 'B': 'False'}, {'A and B': 'False', 'A': 'False', 'B': 'True'}, {'A and B': 'True', 'A': 'True', 'B': 'True'}]

Indices and tables

	Index

	Search Page

License

This module is released under the MIT license.

Index

 B
 | C
 | D
 | F
 | H
 | L
 | R
 | S
 | T
 | V
 | W

B

 	
 	bottom_border (texttables.Dialect attribute)

C

 	
 	cell_delimiter (texttables.Dialect attribute)

 	
 	corner_border (texttables.Dialect attribute)

D

 	
 	Dialect (class in texttables)

 	dialect (texttables.dynamic.DictWriter attribute)

 	(texttables.dynamic.writer attribute)

 	(texttables.fixed.DictReader attribute)

 	(texttables.fixed.DictWriter attribute)

 	(texttables.fixed.reader attribute)

 	(texttables.fixed.writer attribute)

 	
 	DictReader (class in texttables.fixed)

 	DictWriter (class in texttables.dynamic)

 	(class in texttables.fixed)

F

 	
 	fieldnames (texttables.dynamic.DictWriter attribute)

 	(texttables.fixed.DictReader attribute)

 	(texttables.fixed.DictWriter attribute)

 	(texttables.fixed.reader attribute)

 	file (texttables.dynamic.DictWriter attribute)

 	(texttables.dynamic.writer attribute)

 	(texttables.fixed.DictReader attribute)

 	(texttables.fixed.DictWriter attribute)

 	(texttables.fixed.reader attribute)

 	(texttables.fixed.writer attribute)

 	
 	finish() (texttables.dynamic.writer method)

H

 	
 	header_delimiter (texttables.Dialect attribute)

L

 	
 	left_border (texttables.Dialect attribute)

 	
 	lineterminator (texttables.Dialect attribute)

R

 	
 	reader (class in texttables.fixed)

 	right_border (texttables.Dialect attribute)

 	
 	row_delimiter (texttables.Dialect attribute)

 	rows (texttables.dynamic.writer attribute)

S

 	
 	strict (texttables.Dialect attribute)

 	
 	strip (texttables.Dialect attribute)

T

 	
 	top_border (texttables.Dialect attribute)

V

 	
 	ValidationError (class in texttables)

W

 	
 	widths (texttables.fixed.DictReader attribute)

 	(texttables.fixed.DictWriter attribute)

 	(texttables.fixed.reader attribute)

 	(texttables.fixed.writer attribute)

 	writebottom() (texttables.fixed.DictWriter method)

 	(texttables.fixed.writer method)

 	writeheader() (texttables.dynamic.DictWriter method)

 	(texttables.dynamic.writer method)

 	(texttables.fixed.DictWriter method)

 	(texttables.fixed.writer method)

 	writer (class in texttables.dynamic)

 	(class in texttables.fixed)

 	
 	writerow() (texttables.dynamic.DictWriter method)

 	(texttables.dynamic.writer method)

 	(texttables.fixed.DictWriter method)

 	(texttables.fixed.writer method)

 	writerows() (texttables.dynamic.DictWriter method)

 	(texttables.dynamic.writer method)

 	(texttables.fixed.DictWriter method)

 	(texttables.fixed.writer method)

 	writetop() (texttables.fixed.DictWriter method)

 	(texttables.fixed.writer method)

 nav.xhtml

 Table of Contents

 		texttables python module

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

